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bstract

Embryonic stem (ES) cells have the ability to differentiate in vitro into a wide variety of cell types with potential applications for tissue
egeneration. However, a large number of cells are required, thus strengthening the need to develop large-scale systems using chemically defined
edia for ES cell production and/or controlled differentiation.
In the present studies, a stirred culture system (i.e. spinner flask) was used to scale-up mouse ES (mES) cell expansion in serum-containing

DMEM/FBS) or serum-free medium, both supplemented with leukemia inhibitory factor (LIF), using either Cytodex 3 or Cultispher S microcarriers.
fter 8 days, maximal cell densities achieved were (1.9 ± 0.1), (2.6 ± 0.7) and 3.5 × 106 cells/mL for Cytodex 3 in DMEM/FBS, Cultispher S in
MEM/FBS and Cultispher S in serum-free cultures, respectively, with fold increases of 38 ± 2, 50 ± 15 and 70. Both microcarriers were suitable
o sustain mES cell expansion, though the macroporous Cultispher S seemed to be advantageous in providing a more protective environment against
hear stress forces, which harmful effects are exacerbated in serum-free conditions. Importantly, mES cells expanded under stirred conditions using
erum-free medium retained their pluripotency and the ability to commit to the neural lineage.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Embryonic stem (ES) cells can be defined as pluripotent cells
aving unlimited capacity to replicate themselves through a self-
enewal mechanism, with the ability to differentiate into multiple
ell types from all three embryonic layers: ectoderm, meso-
erm and endoderm (Smith, 2001). Undifferentiated ES cells
ay potentially provide a starting source material to be used in

egenerative medicine or as a basis for biological, pharmacolog-
cal and toxicological studies in vitro as a reliable alternative to
nimal models (Hook et al., 2005; Passier and Mummery, 2003;

outon and Haynes, 2005). Therefore, it is important to develop
technology for the scalable and controllable production of

ndifferentiated ES cells and ES cell-derived cells.

∗ Corresponding author. Tel.: +351 218 419 063; fax: +351 218 419 062.
E-mail address: joaquim.cabral@ist.utl.pt (J.M.S. Cabral).
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Typically, the mouse has been considered as an animal model
f embryonic development in mammals and it has been widely
xploited as a model for conducting both in vitro and in vivo
tudies, giving an important insight into different aspects of
evelopment biology (Keller, 2005). Although mouse ES (mES)
re relatively short-lived in the embryo in vivo, they can be
aintained in vitro for long periods of time without any appar-

nt loss of differentiation potential, by culturing them with
rowth medium containing leukemia inhibitory factor (LIF)
ith/without a feeder layer of murine embryonic fibroblasts

MEF) (Evans and Kaufman, 1981). In addition, mES cells
ave shown the ability to differentiate in vitro into a wide vari-
ty of cell types such as hematopoietic (Dang et al., 2002;
iu et al., 2005) and neuronal (Lang et al., 2004; Ying et al.,

003b).

Nevertheless, mES cell exploitation has been bewildered by
he inclusion of animal serum in the culture medium composi-
ion (Wiles and Johansson, 1999; Ying et al., 2003a). Indeed,
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nimal serum is poorly characterized and is a potential factor of
nfectious agent transmission (Ying et al., 2003a). In this context,
t has been previously demonstrated that serum-free, chemically
efined media can successfully support ES cell proliferation and
ifferentiation (Wiles and Johansson, 1999; Ying et al., 2003a).
n particular, a specific complete serum-free medium was devel-
ped that maintains ES cell features during prolonged expansion
Ying et al., 2003a). In addition to LIF, this medium is sup-
lemented with bone morphogenic protein 4 (BMP4), whose
olecular signals are necessary for suppression of neural differ-

ntiation and concomitant self-renewal in the absence of serum
Ying et al., 2003a).

On the other hand, although many studies have addressed
ES cell expansion, only few addressed the scale-up of mES cell

ultures (Abranches et al., 2007; Bauwens et al., 2005; Cormier
t al., 2006; Dang et al., 2004; Fok and Zandstra, 2005). Despite
he widespread usage of static culture systems such as T-flasks or
issue culture Petri dishes for expanding ES cells, these have seri-
us limitations especially concerning their non-homogeneous
ature which results in concentration gradients (e.g. pH, dis-
olved oxygen and metabolites) in the culture medium (Hassell
t al., 1991; Pörtner et al., 2005). In addition, these culture sys-
ems are limited in their productivity by the number of cells
hat can be supported by a given surface area (Cabrita et al.,
003). Therefore, it turns necessary to consider alternative sys-
ems which allow a better homogeneity, a tighter control and/or
igher productivity. Simple stirred vessels, the so-called spinner
asks, offer attractive advantages of ready scalability and rela-

ive simplicity and homogeneity. However, their use for strictly
nchorage dependent cells, like mES cells, is not straightfor-
ard. In the last years, several methods of expanding adherent
ES cells in homogeneous suspension in spinner flasks have

een reported, either in the form of aggregates (Cormier et al.,
006; Fok and Zandstra, 2005), encapsulated (Bauwens et al.,
005; Dang et al., 2004) or using microcarriers as substrate
or cell attachment (Abranches et al., 2007; Fok and Zandstra,
005). Microcarriers are cell-supporting particles which can be
ade of many different materials (e.g. dextran, polystyrene,

elatin) of various shapes (e.g. spherical). These can be classi-
ed as microporous (pore diameter smaller than 1 �m, allowing
ell adhesion and growth only on the external surface of the sup-
ort) or macroporous, allowing cells to use the internal surface
f the bead for cell adhesion and proliferation (pore diameter of
0–50 �m).

In the present studies, the 46C mES cell line (a E14TG2a-
erived cell line) was used as a model, which contains a
reen fluorescent protein (GFP) knock-in at the Sox1 locus
neuroepithelial marker gene) (Ying and Smith, 2003). Ying
nd collaborators demonstrated that this cell line can be
nduced to undergo neural commitment in serum-free con-
itions, where the inductive signals for other cell fates are
liminated (Ying and Smith, 2003; Ying et al., 2003b). Here,
e investigated the feasibility of scaling-up 46C mES cell
xpansion using a microcarrier-based stirred culture system,
ither in traditional serum-containing medium or serum-free
onditions using two different microcarriers, Cytodex 3 and
ultispher S.

c
1
i
i
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. Materials and methods

.1. Cell culture

46C mES cells were a gift from the laboratory of Professor
ustin Smith at the Institute of Stem Cell Research, Univer-

ity of Edinburgh, Scotland, UK. 46C mES cells were kept
ryopreserved in liquid nitrogen until further use.

.1.1. mES cell expansion in static conditions prior to
pinner flask inoculation

Upon thawing, 46C cells were expanded on gelatinized tis-
ue culture plates for two passages, using either Dulbecco’s
odified Eagle’s medium (DMEM) (GibcoBRL) containing

0% fetal bovine serum (FBS) (GibcoBRL), 1% Glutamine
00 mM (GibcoBRL), 1% penicillin (50 U/mL)/streptomycin
50 �g/mL) (GibcoBRL), 1% non-essential Amino acids 100×
Sigma), 0.1% 2-mercaptoethanol 0.1 mM (Sigma) or serum-
ree ESGRO complete medium (Chemicon). Serum-containing
edium (DMEM/FBS) was supplemented with 0.1% LIF (mLIF
SGRO 106 U, Chemicon or hLIF produced by 293-EBNA
ells), while the ESGRO medium used in serum-free cultures
ontains LIF in its formulation. The cells were cultured at 37 ◦C
nder a 5% CO2 humidified atmosphere.

In each passage, viable and dead cells were determined by
ounting in a hemocytometer under an optical microscope using
he trypan blue dye exclusion test (GibcoBRL).

.1.2. mES cell expansion in stirred conditions
mES cell expansion was performed using spinner flasks with

icrocarriers to support cell adhesion and culture under stirred
onditions. Spinner flasks were placed inside an incubator at 5%
O2 in air and 37 ◦C, with aeration taking place in the gas/liquid

nterface.
Two commercially available microcarriers, Cytodex 3 (GE

ealthcare) and Cultispher S (Percell Biolytica), designed to
e used in stirred systems, were used to support cell expansion
n spinner flasks. A summary of the characteristics of the two

icrocarriers is presented in Table 1. As a preliminary approach,
oth microcarriers were tested for biocompatibility and mES
ell adhesion ability under static conditions in cell culture plates
ollowing the manufacturer’s instructions.

Two spinner flasks suitable for microcarrier cell culture were
ested: Bellco (Bellco Biotechnology) and StemSpan (StemCell
echnologies), with working volumes of 80 and 30 mL, respec-

ively. Both spinner flasks are equipped with an impeller with
0◦ paddles (normal paddles) and a magnetic stir bar.

mES cell culture on both microcarriers was per-
ormed following manufacturer’s instructions. 46C mES cells
5 × 104 cells/mL) previously expanded for two passages in
0 mm culture plates, were mixed with appropriate concen-
rations of microcarriers previously hydrated, sterilized by
utoclaving and equilibrated in pre-warmed (37 ◦C) serum-

ontaining medium. The bead concentrations used were 0.5 and
mg/mL for Cytodex 3 and Cultispher S, respectively. Before

noculation of the spinner flask, cells and microcarriers were
ncubated at 37 ◦C in 1/6 of the final medium volume during
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0 min, with gentle agitation every 10 min. Then, fresh pre-
armed (37 ◦C) medium was gently added, until half of the
nal volume, and cell suspension was transferred to the spinner
ask.

For spinner flask cell inoculation with Cytodex 3, after 3 h of
ntermittent stirring (2 min of stirring at 30–40 rpm followed by
0 min statically), medium was added to 3/4 of the final volume
nd intermittent stirring was performed during 3 h. Then, the
est of the medium was added and the agitation speed adjusted
o 40 rpm (Abranches et al., 2007).

In Cultispher S cultures, after a 24-h seeding period with
ntermittent stirring (15 min of stirring at 30–40 rpm, followed
y 60 min statically), medium was added up to the final volume
nd the speed adjusted to 40 rpm.

In both cases, feeding was performed every 1–2 days by
eplacing 50% of the medium with fresh pre-warmed medium.
he removing/replenishment of the culture medium was per-

ormed immediately after the quick sedimentation of the micro
arriers containing the cells.

.2. Monitoring of cell culture in spinner flask

.2.1. Cell counts and viability
Everyday, duplicate samples of evenly mixed culture were

ollected from the spinner flask. The beads were washed twice
ith phosphate buffer saline (PBS) (Sigma) and then trypsin

GibcoBRL) (0.25 and 1% solution for Cytodex 3 and Culti-
pher S cultures, respectively) was added. Cell samples were
hen incubated for 10 min in a 37 ◦C water-bath. Occasional
icking was performed in order to facilitate detachment of cells
rom the beads and/or gelatin matrix dissolution (Cultispher S).

Viable and dead cells were determined by using the trypan
lue dye exclusion test on a hemocytometer. Supernatant sam-
les were centrifuged at 1500 rpm for 10 min and kept at −20 ◦C
or subsequent analysis.

.2.2. Growth rates and doubling times
The growth kinetics of 46C mES cells cultured under stirred

onditions on microcarriers was also characterized. Specific
rowth rates were calculated using the following equation
Melero-Martin et al., 2006):

= 1

X

dX

dt
≈ 2

X2 + X1

X2 − X1

t2 − t1

here μ (day−1) corresponds to the value of specific growth rate
t any given time point, t (days) the culture time and X (cells)
he value of viable cell number for a specific t. From this, the
oubling time (td) was calculated using the following equation,

d = ln(2)/μmax.

.2.3. Viability (nuclear integrity)
Every 2 days, samples of cell-containing beads were washed

ith PBS, fixed with 1% paraformaldehyde (Sigma) for 20 min

t room temperature and washed, once again, with PBS. Then,
he cells were incubated in the dark with 4′,6-diamino-2-
henylindole dilactate (DAPI, 1.5 �g/mL in PBS) for 5 min at
oom temperature and protected from light, washed with PBS

2

t
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nd stained nuclei (blue) were visualized under a fluorescence
icroscope.

.2.4. Metabolic activity
Periodically, samples of microcarriers were washed once with

BS and incubated with 40 �L of MTT (3-(4,5-dimethylthiazol-
-yil)-2,5-diphenyltetrazolium bromide, Sigma) (5 mg/mL in
BS) and 400 �L of PBS at 37 ◦C for 3 h or 45 min for Cytodex
and Cultispher S. MTT is cleaved by an enzyme in the respira-

ion chain in the mitochondria if the cell is metabolically active,
enerating MTT formazan, a dark blue compound, visible by
icroscopy.

.2.5. Alkaline phosphatase staining
Samples of beads containing mES cells were washed with

BS and fixed in 10% cold neutral-buffered formalin (Sigma) for
5 min. After fixing, the cells were washed and kept in distilled
ater for another 15 min. Following the washing step, the cells
ere incubated with a 1:1 solution of distilled water/Tris–HCl

Sigma) containing Naphthol AS MX-PO4 (0.1 mg/mL, Sigma)
nd Red Violet LB salt (0.6 mg/mL, Sigma) for 45 min and
ashed three times in distilled water. Finally, cells were kept

n distilled water and observed with an optical microscope.

.2.6. Metabolite analysis
Glucose, lactate, glutamine and ammonia concentrations

ere determined in the supernatant samples collected through-
ut the experiments by using an automatic analyzer (YSI
100MBS, Yellow Springs Instruments). The specific metabolic
ates (qMet., mol/(day cell)) were calculated for every time
nterval using the following equation: qMet. = �Met./(�t �Xv),
here �Met. is the variation in metabolite concentration dur-

ng the time period �t and �Xv the average viable cell
umber during the same time period. The apparent lactate
rom glucose (Y ′

lactate/glucose), and ammonia from glutamine
Y ′

ammonia/glutamine) yields were also calculated as the ratio
etween qlactate/qglucose and qammonia/qglutamine.

.3. Neural commitment of 46C mES cells expanded under
erum-free conditions

After cell expansion in the spinner flask, the cells were tested
or their neural commitment potential. After the trypsinization
tep for Cultispher S gelatin matrix dissolution, the cells were
rstly expanded during 24 h under static conditions in gela-

inized tissue-culture grade plates at high cell concentration
1 × 105 cells/cm2). Then, cells were collected after trypsiniza-
ion, resuspended in serum-free RHB-A medium (Stem Cell
ciences) and 104 cells/cm2 were re-plated in 1 mL in gela-

inized 12-well tissue-culture plates. Cells were cultured for
days and the medium was replaced every 2 days by fresh

re-warmed (37 ◦C) RHB-A medium.
.4. Flow cytometric quantification of neural conversion

As previously mentioned, the use of 46C mES cells allows
he quantification of neural progenitors by flow cytometry based
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Fig. 1. 46C mES cell culture on microcarriers in a spinner flask culture system using serum-containing medium. Growth curves in terms of viable cells per milliliter
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A and B) and cell expansion in terms of fold increase in total cell number (C
epresented. Cells were inoculated at 5 × 104 cells/mL on 0.5 or 1 mg of micr
eviation of two independent experiments.

n GFP expression (Ying and Smith, 2003). To this end, after
ulture in differentiation medium (Section 2.3), the cells were
rstly trypsinized, washed in serum-containing medium, cen-

rifuged at 1000 rpm for 2 min, resuspended in PBS containing
% FBS and counted. The cells were then analyzed using a flow
ytometer (FACSCalibur, Becton Dickinson) and the CellQuest
oftware (Ying and Smith, 2003). Undifferentiated 46C ES cells
ere used as negative control.

. Results

.1. 46C mES cell expansion on microcarriers in stirred
ulture conditions using serum-containing medium

Herein, envisaging the need to scale-up mES cell expansion
nder serum-free conditions, we firstly compared the ability of
wo microcarriers—Cytodex 3 and Cutispher S to support 46C

ES cell expansion in a spinner flask using serum-containing

edium.
46C mES cells were cultured for 8 days in a spinner

ask culture system with DMEM/FBS supplemented with LIF.
hroughout the experiments, for both microcarriers, the cell via-

a
t
d

ig. 2. Specific growth rate profile of 46C mES cells cultured on microcarriers in a spi
rowth rates were calculated for cells cultured on Cytodex 3 (A) and Cultispher S (B
) of 46C mES cells cultured on Cytodex 3 and Cultispher S, respectively, are
ers/mL in DMEM/FBS supplemented with LIF. Error bars represent standard

ilities were always above 90%, and the fraction of cells found
n suspension was always less than 5% (data not shown). Viable
ell densities obtained (A and B), as well as the fold increase in
otal cell number achieved (C and D) are represented in Fig. 1
or Cytodex 3 and Cultispher S culture systems, respectively.

It is possible to conclude that both microcarriers were able
o support mES cell expansion. In both cases, the growth
urve comprises a 24 h lag phase followed by an exponential
hase leading to maximal cell concentrations of (1.9 ± 0.1) and
2.6 ± 0.7) × 106 cells/mL at days 6 and 8 for Cytodex 3 and
ultispher S cultures, respectively; these correspond to fold

ncrease values of 38 ± 2 (Fig. 1C) and 50 ± 15 (Fig. 1D).
lthough under the present culture conditions no significant dif-

erences can be found in terms of the proliferative supporting
bility of the two microcarriers tested, it seems that the “start
p” of the culture was faster for the mES cells expanded on
ytodex 3 (i.e. shorter lag phase) since the fold increase values
ere higher in the early beginning.

On the other hand, the Cytodex 3 culture reached the station-

ry (plateau) phase by day 4, while in Cultispher S experiments,
he cell growth seemed to slow down only beyond day 7. By
ay 6, a decrease in cell density was observed in Cytodex 3 cul-

nner flask using serum-containing medium. Throughout time in culture, specific
). Error bars represent standard deviation of two independent experiments.
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ig. 3. Metabolic quotient profiles during 46C mES cell culture on Cytodex 3
onsumption rates, as well as lactate (C) and ammonia (D) specific production
f two independent experiments.

ures, but no significant increase in cell death was observed.
n fact, it should be mentioned that cell monitoring during
ytodex 3 cultures required, after trypsinization, a filtration step

n order to separate the dextran beads from the cells. How-
ver, this step was extremely inefficient in the last days of the
ulture, since the beads became “clumped”, obstructing the fil-
er surface, turning difficult the recovery of the cells from the
eads.

Specific growth rates were also calculated according to Sec-
ion 2 and are represented in Fig. 2. In both cases, the specific
rowth rate curve followed the expected pattern for mammalian
ell culture in general: after an initial increase reaching the
aximum specific growth rate by days 2–3 (1.3 ± 0.1 and

.0 ± 0.2 day−1 for Cytodex 3 and Cultispher S, respectively)
his rate decreases, either due to depletion of essential nutri-
nts or accumulation of inhibitory metabolites. Concerning the

oubling times (td), the fact of td(Cytodex 3) < td(Cultispher S) (0.53
ay versus 0.69 day) is consistent with the observation that cells
eeded more time to adhere and to start proliferate in Cultispher
cultures.

g
t
r
m

ig. 4. Metabolic quotient profiles during 46C mES cell culture on Cultispher S micr
onsumption rates, as well as lactate (C) and ammonia (D) specific production rates
f two independent experiments.
carriers in serum-containing medium. Glucose (A) and glutamine (B) specific
during time in culture are represented. Values displayed represent the average

.2. 46C mES cell metabolism during microcarrier cell
ulture in stirred culture conditions using serum-containing
edium

The best way to characterize cell metabolism patterns is in
erms of consumption rates and production rates per viable cell
i.e. metabolic quotients). Glucose and glutamine consumption
ates, as well as lactate and ammonia production rates during
he time in culture are represented in Figs. 3 and 4 for Cytodex 3
nd Cultispher S experiments, respectively. Overall, the specific
onsumption/production rates are higher during the first 2 days
f culture consistent with the initial higher cell growth; then,
fter the adaptation of the cells to the culture environment, these
alues decrease becoming roughly constant.

It was also possible to conclude that, in general, the medium
eplacement was efficient at supplying nutrients (glucose and

lutamine). Indeed, during time in culture, the glucose and glu-
amine concentrations did not decrease beyond 5 and 0.6 mM,
espectively, never being completely depleted from culture
edium.

ocarriers in serum-containing medium. Glucose (A) and glutamine (B) specific
during time in culture are represented. Values displayed represent the average
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Concerning the lactate concentrations, in both cases, the val-
es were above 20 mM after the day 3. Although no specific
ata was found in the literature concerning inhibitory lactate
oncentrations for mES cell proliferation, it has been reported
hat hematopoietic cell proliferation, as well as for other mam-

alian cells, is inhibited above 20 mM (Ozturk et al., 1992;
atel et al., 2000). For Cytodex 3 culture, the stationary phase
as reached by day 4, which might suggest that the concentra-

ion of lactate above 20 mM observed could be inhibitory for
he mES cell growth as well. However, for Cultispher S cul-
ures, although lactate concentrations also exceeded this value,
n extended exponential growth phase was observed compared
o Cytodex 3 experiments. Therefore, from these results it is not
ossible to assure that 20 mM lactate concentration is inhibitory
or mES cell growth.

Ammonia, a by-product of glutamine metabolism, has also
harmful effect to cells, being an order of magnitude more

oxic than lactate. Here, for all cultures ammonia levels never
eached concentrations higher than 3 mM. Inhibitory effects to
ell growth by ammonia accumulation have been reported for
oncentrations above 4 mM for mammalian cells (Ozturk et al.,
992).

The overall apparent lactate from glucose (Y ′
lact./gluc.), and

mmonia from glutamine (Y ′
ammo./glut.) yields were also cal-

ulated. The Y ′
lact./gluc. provides an estimate of the fraction of

lucose converted to lactate via glycolysis (Santos et al., 2005).
he overall value of Y ′

lact./gluc. was 1.4 and 1.7 mollac./molgluc.,
or Cytodex 3 and Cultispher S cultures, respectively. Although
hese values were similar for both microcarrier culture systems,
he fact of Y ′

lact./gluc. was slightly higher for Cultispher S, might
uggest the occurrence of oxygen limitation due to the higher
ell numbers achieved during mES cell culture with this micro-
arrier.
On the other hand, the calculated Y ′
ammo./glut. was 0.7 and

.6 molammo./molglut., which is similar to the values reported in
he literature for hybridoma, BHK and CHO cells (Cruz et al.,
000; Lao and Toth, 1997; Zhou et al., 1997). For instances, as

u
p
H
c

ig. 5. Optical microscope photographs of 46C mES cells cultured on microcarriers
ay 6 (3) and Day 8 (4) after MTT staining (100× amplification) for Cytodex 3 (A) a
technology 132 (2007) 227–236

ong as the glutamine concentration is above 0.3 mM (Cruz et al.,
000), Y ′

ammo./glut. has been shown to be constant in hybridoma
ell culture.

.3. Evaluation of cell adhesion/viability, metabolic
ctivity and pluripotency of 46C mES cells cultured on
icrocarriers

MTT and DAPI stainings were performed every 2 days dur-
ng time in culture for both microcarriers. It was observed a
radual increase in microcarrier occupancy by mES cells. In
ddition, cells remained viable and metabolically active in cul-
ure. Fig. 5 indicates a successful cell adhesion of mES cells to
oth microcarriers after 2 days of culture (1); at day 4, the num-
er of viable cells in the microcarriers had significantly increased
nd some microcarrier aggregation was observed (2). At days 6
nd 8 (Fig. 5(3) and (4), respectively), a high percentage of beads
s totally covered by mES cells, and the intense microcarrier
ggregation becomes more evident. In addition, it was possi-
le to observe that cells grew preferentially around the external
urface of the macroporous Cultispher S; however, by changing
he microscope amplification and focusing plans, different col-
nized plans of the 3D particles are visualized, suggesting that
ells are also found in the interior of the gelatin matrix. Impor-
antly, cell cultured for 8 days, stained positively for alkaline
hosphatase, indicating that a high percentage of cells remained
luripotent, in their undifferentiated state (data not shown).

.4. 46C mES cell expansion on Cultispher S microcarriers
n stirred culture conditions: serum-containing versus
erum-free conditions

Results in the previous sections indicated the feasibility of

sing macroporous gelatin Cultispher S microcarriers to sup-
ort 46C mES cell expansion using a serum-containing medium.
ere, we performed a side-by-side comparison of 46C mES cell

ulture on Cultispher S using either serum-containing or serum-

under stirred culture conditions. Cells were visualized at Day 2 (1), Day 4 (2),
nd Cultispher S (B) cultures, respectively.
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Fig. 6. 46C mES cell expansion on Cultispher S microcarriers in a spinner flask. Growth curve in terms of viable cells per milliliter (A) and cell expansion in
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Fig. 8. Evaluation of pluripotency and neural commitment potential of 46C ES cells cultured on Cultispher S microcarriers under stirred culture conditions in
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as observed that Y ′
lact./gluc. was higher than the theoretical value

f 2 at the first day of culture, suggesting the utilization of glu-
amine as the preferential carbon source. Glucose and glutamine
oncentrations were never less than 5 and 0.6 mM, respectively,
taying within the accepted physiological rate for mammalian
ells in general (Ozturk et al., 1997).

The ultimate goal of our studies was to confirm that 46C
ES cells expanded for 8 days under stirred conditions using
icrocarriers retained their pluripotency and neural commit-
ent potential. Alkaline phosphatase staining confirmed the
aintenance of pluripotency by the 46C mES cells expanded

nder serum-free conditions using Cultispher S. In addition,
hose cells were able to undergo neural commitment using an
ppropriate culture medium and, after 6 days of culture, 90% of
ells were Sox1-GFP positive. This value is comparable, though
lightly higher, to the results obtained for 46C mES neural com-
itment in static culture conditions (<80%) (Ying and Smith,

003).
In conclusion, our results show the feasibility of using a

icrocarrier-based spinner flask culture system to scale-up mES
ell expansion. Importantly, we describe a successful strategy
or the expansion of mES cells on macroporous microcarriers,
nder stirred conditions using serum-free medium, while retain-
ng the pluripotency and neural commitment potential of the
xpanded cells. Although spinner flasks are regarded as biore-
ctors at laboratory scale, the high cell densities achieved in
ulture, especially when using serum-free conditions, demon-
trate the potential of this particular culture system for use in
cale-up strategies. The efficient, reproducible and cost-effective
roduction of ES cells for use in multiple setting will require a
ioreactor system which allow a more precise control over cul-
ure conditions to yield a greater number of cells (for example,
y monitoring and continuously adjusting of oxygen content or
H).
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